首页> 外文OA文献 >Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method
【2h】

Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method

机译:两种随机因子模型下美式期权的数值定价   使用无网格局部petrov-Galerkin方法跳跃

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The most recent update of financial option models is American options understochastic volatility models with jumps in returns (SVJ) and stochasticvolatility models with jumps in returns and volatility (SVCJ). To evaluatethese options, mesh-based methods are applied in a number of papers but it iswell-known that these methods depend strongly on the mesh properties which isthe major disadvantage of them. Therefore, we propose the use of the meshlessmethods to solve the aforementioned options models, especially in this work weselect and analyze one scheme of them, named local radial point interpolation(LRPI) based on Wendland's compactly supported radial basis functions(WCS-RBFs) with C6, C4 and C2 smoothness degrees. The LRPI method which is aspecial type of meshless local Petrov-Galerkin method (MLPG), offers severaladvantages over the mesh-based methods, nevertheless it has never been appliedto option pricing, at least to the very best of our knowledge. These schemesare the truly meshless methods, because, a traditional non-overlappingcontinuous mesh is not required, neither for the construction of the shapefunctions, nor for the integration of the local sub-domains. In this work, theAmerican option which is a free boundary problem, is reduced to a problem withfixed boundary using a Richardson extrapolation technique. Then theimplicit-explicit (IMEX) time stepping scheme is employed for the timederivative which allows us to smooth the discontinuities of the options'payoffs. Stability analysis of the method is analyzed and performed. In fact,according to an analysis carried out in the present paper, the proposed methodis unconditionally stable. Numerical experiments are presented showing that theproposed approaches are extremely accurate and fast.
机译:金融期权模型的最新更新是收益率跳跃(SVJ)的美国期权随机波动率模型和收益率与波动性跳跃(SVCJ)的随机波动率模型。为了评估这些选项,在许多论文中都采用了基于网格的方法,但是众所周知,这些方法在很大程度上取决于网格的属性,这是它们的主要缺点。因此,我们建议使用无网格方法来解决上述选择模型,特别是在这项工作中,我们选择并分析了其中的一种方案,即基于Wendland的紧支撑径向基函数(WCS-RBFs)的局部径向点插值(LRPI), C6,C4和C2的平滑度。 LRPI方法是无网格本地Petrov-Galerkin方法(MLPG)的一种特殊类型,它比基于网格的方法具有多种优势,但是至少就我们所知,它从未用于期权定价。这些方案是真正的无网格方法,因为不需要传统的不重叠的连续网格,无论是形状函数的构造还是局部子域的集成都不需要。在这项工作中,使用理查森外推技术将作为自由边界问题的美式期权简化为具有固定边界的问题。然后将隐式-显式(IMEX)时间步长方案用于时间导数,这使我们能够平滑期权收益的不连续性。分析并执行该方法的稳定性分析。实际上,根据本文的分析,该方法是无条件稳定的。数值实验表明,所提出的方法是非常准确和快速的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号